Set-Membership Constrained Conjugate Gradient Beamforming Algorithms
نویسندگان
چکیده
In this work a constrained adaptive filtering strategy based on conjugate gradient (CG) and set-membership (SM) techniques is presented for adaptive beamforming. A constraint on the magnitude of the array output is imposed to derive an adaptive algorithm that performs data-selective updates when calculating the beamformer’s parameters. We consider a linearly constrained minimum variance (LCMV) optimization problem with the bounded constraint based on this strategy and propose a CG type algorithm for implementation. The proposed algorithm has data-selective updates, a variable forgetting factor and performs one iteration per update to reduce the computational complexity. The updated parameters construct a space of feasible solutions that enforce the constraints. We also introduce two time-varying bounding schemes to measure the quality of the parameters that could be included in the parameter space. A comprehensive complexity and performance analysis between the proposed and existing algorithms are provided. Simulations are performed to show the enhanced convergence and tracking performance of the proposed algorithm as compared to existing techniques.
منابع مشابه
Set-Membership Conjugate Gradient Constrained Adaptive Filtering Algorithm for Beamforming
We introduce a new linearly constrained minimum variance (LCMV) beamformer that combines the set-membership (SM) technique with the conjugate gradient (CG) method, and develop a low-complexity adaptive filtering algorithm for beamforming. The proposed algorithm utilizes a CG-based vector and a variable forgetting factor to perform the dataselective updates that are controlled by a time-varying ...
متن کاملRobust Adaptive Beamforming Algorithms Based on the Constrained Constant Modulus Criterion
We present a robust adaptive beamforming algorithm based on the worst-case criterion and the constrained constant modulus approach, which exploits the constant modulus property of the desired signal. Similarly to the existing worstcase beamformer with the minimum variance design, the problem can be reformulated as a second-order cone (SOC) program and solved with interior point methods. An anal...
متن کاملConstrained adaptive filtering algorithms based on conjugate gradient techniques for beamforming
This article proposes constrained adaptive algorithms based on the conjugate gradient (CG) method for adaptive beamforming. The proposed algorithms are derived for the implementation of the beamformer according to the minimum variance and constant modulus criteria subject to a constraint on the array response. A CG-based weight vector strategy is created for enforcing the constraint and computi...
متن کاملRobust Adaptive Beamforming Algorithms using the Constrained Constant Modulus Criterion
We present a robust adaptive beamforming algorithm based on the worst-case criterion and the constrained constant modulus approach, which exploits the constant modulus property of the desired signal. Similarly to the existing worst-case beamformer with the minimum variance design, the problem can be reformulated as a secondorder cone (SOC) program and solved with interior point methods. An anal...
متن کاملLow-Complexity Reduced-Rank Beamforming Algorithms
A reduced-rank framework with set-membership filtering (SMF) techniques is presented for adaptive beamforming problems encountered in radar systems. We develop and analyze stochastic gradient (SG) and recursive least squares (RLS)-type adaptive algorithms, which achieve an enhanced convergence and tracking performance with low computational cost as compared to existing techniques. Simulations s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1302.0422 شماره
صفحات -
تاریخ انتشار 2013